A note on cookies

We use cookies to improve your experience of our website. Privacy Policy

Queen Mary University of LondonQueen Mary University of London
Staff menu

Prof Martin Knight
BEng, MSc, PhD, FHEA


Research Overview

Much of Prof Martin Knight’s research concerns the area of mechanobiology and how living cells and tissues ‘sense and respond’ to mechanical forces at a biological level and in terms of their biomechanical properties. This is essential for the health and functionality of many tissues and has potential application in various medical therapies from tissue engineering and regenerative medicine to pharmaceuticals. Studies are examining the role of mechanobiology in a variety of conditions including ageing, cancer, tendonopathy, inflammation and arthritis.  

Prof Knight is actively seeking collaboration and incoming PhD students and research fellows through schemes such as the Marie Sklowdoska-Curie Fellowships.

Prof Knight's research in mechanobiology and bioengineering includes the following :

Organ-on-a-Chip in vitro models

We are developing novel organ-on-a-chip in vitro models with a particular focus on incorporation of appropriate biomechanical stimuli to replicate the physiological and pathological environment. One example of this work is our recent major European Research Council (ERC) funded programme, CANBUILD, which used bioengineering techniques to grow a complete tumour microenvironment in vitro in order to understand cancer development and to test pharmaceutical treatments.
Prof Knight is also the co-director of the Organ-on-a-chip Technologies Network funded by MRC, EPSRC and BBSRC.

Primary Cilia Structure and Function

A particular focus of my research involves the role of primary cilia in mechanobiology. These fascinating cellular structures have been largely ignored, but have now been shown to be involved in mechanosignalling although the mechanisms are not yet clear. Furthermore mechanical forces regulate the expression of cilia which in turn modulates other signalling pathways. My group are examining the relationship between cilia structure and function and how this is influenced by disease, ageing and physico-chemical stimuli.

Our group published the first paper showing that primary cilia are required for cartilage mechanotransduction (Wann et al. 2012a). We have also shown, for the first time, that primary cilia are involved in inflammatory signalling in response to cytokines such as interleukin-1 (Wann et al. 2012b; 2013; 2014). Further studies have reported how regulation of cilia length controls hedgehog signalling (Thompson et al. 2014; 2015; Prodromou et al. 2012), wnt signalling (McMurray et al. 2014), and growth factor signalling (Dalbay et al. 2015). Through understanding these fundamental behaviours and the effect of physico-chemical stimuli we hope to have future impact in the development of ciliotherapies for treatment of disease and injury. 

With collaborators across the UK, I set up the UK cilia network bringing together researchers with a common interest in cilia: contact me if you are interested in joining the UK cilia network.


Cell and Tissue Mechanobiology and Biomechanics 

Much of the research within the group examines cellular mechanosignalling and the effects of mechanical and physico-chemical stimuli on cell function. This overlaps with interest in understanding the role of primary cilia in mechanobilogy.

In addition Prof Knight has a track record of research on cell and tissue biomechanics. Studies involve understanding the biomechanical properties of articular cartilage at a nanoscale and work on tumour mechanics and how this regulates cancer progression. Further studies have examined the mechanical properties of living cells using techniques such as micropipette aspiration and atomic force microscopy.

I gratefully acknowledge research funding from the following institutions:

SEMS division: