Prof David Lee
BSc (Hons), MA, PhD


Research Funding

On this page:

Current Funded Research Projects

Engineering Circadian Biology into Human Induced Pluripotent Stem Cell Organ-on-a-Chip models

Funding source: BBSRC Biotechnology and Biological Sciences Research Council
Start: 01-02-2022  /  End: 31-08-2024
Amount: £201,874

British Heart Foundation – 4 year Doctoral Training Programme

Funding source: British Heart Foundation
Start: 01-09-2017  /  End: 31-08-2024
Amount: £2,300,000

Led by Professors Amrita Ahluwalia and Tim Warner and involving 23 named researchers, the BHF DTP Programme provides cohort training leading to a PhD in cardiovascular research.

Previous Funded Research Projects

Super-Resolution Microscopy of live cells in 3D

Funding source: BBSRC
Start: 01-12-2020  /  End: 31-03-2022

This project funds the acquisition of a novel super resolution microscope, OMX-FLEX, which will be used to develop a range of new techniques enabled by fast 3D Super-Resolution imaging of live-cells.

Incorporating the circadian clock into Organ-on-a-chip (OOAC) devices

Funding source: MRC/HEIF
Start: 01-04-2020  /  End: 31-01-2022

Studies to support the development of more physiologically relevant in vitro model systems which incorporate the circadian clock

University Enterprise Zone

Funding source: RE Research England (RE)
Start: 01-08-2019  /  End: 30-06-2021

Development of space and infrastructure to expand activities for the incubation of life sciences spin-out and start-up companies.

Does the biological clock within cartilage align to diurnal patterns in activity?

Funding source: EPSRC Engineering and Physical Sciences Research Council
Start: 01-10-2019  /  End: 31-03-2020

Mechno-regulation of genome function to direct stem cell rate

Funding source: B.B.S.R.C.
Start: 01-01-2017  /  End: 31-12-2019

Mechno-regulation of genome function to direct stem cell rate

Hydrothermal Biomass Upgrade into Carbon Materials and Leuvinic Acid for Sustainable Catalysis - HydroCat Marie Curie (CIG)

Funding source: Commission of the European Community
Start: 01-03-2014  /  End: 31-08-2018

SuprHApolymers - Engineering macromolecular self-assembly of hyaluronan (HA)-based glycopolymers with peptides

Funding source: Marie Curie Career Integration Grant (FP7)/European Union
Start: 01-03-2014  /  End: 28-02-2018

“SuprHApolymers” project aims to design and synthesize glycopolymers mimicking the composition and structure of hyaluronan (HA), a linear polysaccharide composed of repeating disaccharide units of N-acetyl-glucosamine and glucuronic acid but with many important biological functions. These HA synthetic analogues will be explored for applications in synthetic biology and biomedicine.

Effect of cell age on cell migration and cytoskeletal reorganization’

Funding source: Dunhill Medical Trust
Start: 01-04-2016  /  End: 30-09-2017

Effect of cell age on cell migration and cytoskeletal reorganization


Funding source: Commission of the European Community
Start: 01-05-2014  /  End: 30-04-2017

Use cytoskeletal morphometrics to characterize cell function, behaviour and pathologies

Novel dynamic self-assembling system - BIOMORPH

Funding source: Commission of the European Community
Start: 01-04-2014  /  End: 31-03-2017

The project aims to invetigate the molecular mechanisms between peptides and proteins t create dynamic materials

Optimal Cartilage Regeneration

Funding source: Dunhill Medical Trust
Start: 01-11-2014  /  End: 31-12-2016

Augmenting sirtuin activity to drive cartilage regeneration and treat osteoarthritis.

Funding source: Dunhill Medical Trust
Start: 01-11-2014  /  End: 31-12-2016

Osteoarthritis (OA) is a highly prevalent disease involving degeneration of articular cartilage and chronic inflammation of the joints, with Worldwide estimates that 9.6% of men and 18.0% of women aged >60 years have symptomatic OA. Prevalence increases with age, such that OA is expected to be the fourth leading cause of disability by the year 2020 (WHO report, 2003). Thus factors that slow the onset or progression of this disease will significantly benefit the well-being of older people.

Multiscale Mechanobiology for Tissue Engineering

Funding source: EPSRC
Start: 01-09-2007  /  End: 31-08-2012

Platform Grant Strategic Research Areas i). Mechanics and mechano-signalling at the sub-cellular, cellular and tissue levels. The response of living cells and tissues to mechanical forces is critical to tissue health and homeostasis. Consequently this field of mechanobiology has enormous potential to be exploited in the development of Tissue Engineering ...

Does Warburg energy metabolism contribute to the phenotypic stability of monolayer expanded chondrocytes?

Funding source: MRC
Start: 01-08-2010  /  End: 30-10-2010

Elucidating the contribution of bioenergetic phenotype to the preservation of the differentiated chondrocyte phenotype in vitro.

The modulation of metabolic phenotype in chondrocytes during monolayer expansion in relation to synthetic phenotypic stability, oxidative stress and proliferative senescence.

Funding source: Wellcome Trust
Start: 01-02-2007  /  End: 31-08-2010

Elucidating the role of the chondrocyte bioenergetic phenotype in the preservation of a differentiated synthetic phenotype and senescence in vitro.

Mechanoregulation of nuclear architecture and genome function: A novel mechanism in stem cell fate (Human Frontier Science Program funded)

Funding source: Human Frontier Science Program
Start: 01-06-2009  /  End: 31-05-2010

Gene expression can be regulated through alterations in nuclear architecture, providing control of genome function. Mechanical loading induces both nuclear deformation and alteration in gene expression in a variety of cell types. One putative transduction mechanism for this phenomenon involves alterations to nuclear architecture, resulting from the mechanical perturbation to …

Previous PhD Studentship Projects

FlowMat Marie Curie (CIG)

Funding source: Commission of the European Community
Start: 01-08-2013  /  End: 01-08-2017

The role of membrane-actin adhesion in regulating stem cell viscoelastic properties and blebability during differentiation

Funding source: EPSRC
Start: 09-01-2012  /  End: 10-01-2015

This PhD examines how chondrogenic differentiation of human mesenchymal stem cells (hMSCs) regulates the interaction between the cell membrane and the actin cortex, thereby controlling cell biomechanics. The thesis also investigates the viscoelastic properties of primary articular chondrocytes and the effect of de-differentiation. Micropipette aspiration was used to measure the …

Other Research Projects

Mechano-regulation of genome function to direct stem cell fate

This project addresses the concept that the nucleus acts as a sensor for mechanical stimuli. By characterising biophysical and epigenetic changes as stem cells differentiate, we will identify pathways responsible for the alteration of cellular mechanosensitivity. These can then be targeted to repair defective mechanosensitivity in diseased or aged cells.

Cell and Tissue Engineering

Articular cartilage, mechanotransduction, cytoskeletal dynamics, calcium signalling, chondrocytes in agarose gel, confocal microscopy.