Close

A note on cookies

We use cookies to improve your experience of our website. Privacy Policy

Queen Mary University of LondonQueen Mary University of London
Research menu

School of Engineering and Materials Science
Research Student Awards

PhD Thesis: Natural Rubber/Organoclay Nanocomposites

Author: LOWE, David

Year: 2012

Supervisor(s): James Busfield

Natural rubber (NR)/organoclay nanocomposites were prepared using organomontmorillonite (OMMT) and organo-sepiolite (OSEP). Both were found to improve modulus significantly more than equivalent amounts of conventional fllers such as carbon black for strains up to 100%. OSEP was found to increase modulus more than OMMT for a given filler content, and NR/OSEP nanocomposites also had potentially anisotropic physical properties. OMMT had more effect on vulcanisation than OSEP, although both produced considerable acceleration. The tensile stress-strain behaviour of NR/OMMT and NR/OSEP nanocomposites were studied using a number of different micromechanical models.
Some models were found to give a good empirical fit with experimental data, with the best results given by the Halpin-Tsai model. Furthermore, by analysis of the vulcanisation behaviour using rheometry, and particle morphology using transmission electron microscopy (TEM), it was possible to accurately estimate the Young's modulus of a nanocomposite from knowledge of the cure onset time and the shape factor of the particles.
It was discovered that unmodified montmorillonite and sepiolite clays could undergo organic modification in situ during mixing into NR following the addition of a suitable modifier. This resulted in vulcanisates with very similar physical properties to those found when using pre-modified OMMT or OSEP. TEM and X-ray diffraction showed that the exfoliation state of the clay modified in situ was also similar to that of pre-modified organoclay.
Silane coupling agents were also used with NR/OMMT and NR/OSEP nanocomposites, producing significant increases in modulus. However, the increased modulus was only observed above 40% strain for OMMT and above 25% for OSEP. The coupling agents strengthens the rubber-filler interface preventing interfacial slippage and cavitation in the nanocomposite, and these mechanisms only begin to operate when the interfacial stress reaches a significant level. The most effective coupling agent used was bis[triethoxysilylpropyl] tetrasulphide due to its relatively high reactivity.