Close

A note on cookies

We use cookies to improve your experience of our website. Privacy Policy

Queen Mary University of LondonQueen Mary University of London
Research menu

School of Engineering and Materials Science
Research Student Awards

PhD Thesis: A Process for Recycling Thermosetting Foams and the Incorporation of Recycled Foams into Structural Composite Panels

Author: JAMSHIDI, Mohammad S

Year: 2009

Supervisor(s): Paul Hogg, Ton Peijs

In Europe, the rapidly growing thermosetting foam insulation products industry comprises over 11,500 companies employing over a third of a million people and is worth about 6 billion Euros in trade. It is currently estimated 4-7 % of total new UK production is scrapped and goes to landfill. Estimated costs of disposing of this waste foam are of the order of £20 million/annum to the producers of foam panels and insulation blocks. A new strategic direction for rigid polymeric foams waste management has been developed converting the scrapped thermosetting foams into high added value material that can be used in various applications such as fire resistant insulating applications. Thus by this new innovative recycling process the waste is not only eliminated but benefits can be gained from the new material that comes out of it as a structural composite panel. The project involves a new concept that mixes fragmented scrap thermosetting foams materials with a proprietary liquid that cures at ambient temperature to form an incombustible material capable of withstanding high temperatures >1000 C. In this research different kind of polymeric foams used for manufacturing of reconstituted recycled samples. Sodium silicate solution has been chosen as the binder to binds shredded foams together. Due to fastening of sodium silicate curing different kind of acidic powders have been tested. For increasing of post properties after curing variety of fillers as an additive have been tried throughout this research. Different foam cutting methods have been tested to find the suitable shredding routine. Rationale for selection of generic binder and its hardeners/fillers has been discussed in this project. Also as post properties evaluation compressive strength, thermal resistance, fire resistance and acoustic properties of recycled structural composite panels have been measured. At last a model for thermal conductivity of composite panels is developed.

Full text: PDF icon (22.24MB PDF file)