

Dr Yunpeng Zhu

School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS

tel: +44 (0)20 7882 8732 email: yunpeng.zhu@qmul.ac.uk web: www.sems.qmul.ac.uk/yunpeng.zhu

2025

Data driven modelling approach for design assessment of spacecraft equipment. Yu C, Zhu Y-P, Luo H and Luo Z. Applied Mathematical Modelling vol. 140, Elsevier.

Grey-Box Modeling Method for Single Degree of Freedom Nonlinear Vibration Isolation System.

Wang Z-A, Luo Z, Zhu Y-P, Zhou G-Z and Yu B. Journal of Vibration Testing and System Dynamics vol. 9, (1) 47-61. L and H Scientific Publishing.

2024

FS-PTL: A unified few-shot partial transfer learning framework for partial cross-domain fault diagnosis under limited data scenarios.

Cheng L, Qi H, Ma R, Kong X, Zhang Y and Zhu Y. Knowledge-Based Systems vol. 305, Elsevier.

Lifelong Monitoring of Bearing-Rotor Systems Over Whole Life Cycle: An Emerging Paradigm.

Zhao Y, Liu T, Zhu Y-P, Liu Z, Han Q and Ma H. IEEE Transactions On Industrial Informatics vol. 21, (2) 1319-1328. Institute of Electrical and Electronics Engineers (IEEE).

Structural Damage Detection of Cracked Beams Based on Nonlinear Output Frequency Response Functions and Support Vector Machine.

Zhang W, Guo X, Zhang Y, Zhu Y, Zhang B and Peng Z. Proceedings of The Tepen International Workshop On Fault Diagnostic and Prognostic 312-323. Springer Nature.

A novel causal feature learning-based domain generalization framework for bearing fault diagnosis with a mixture of data from multiple working conditions and machines. Cheng L, Kong X, Zhang Y, Zhu Y, Qi H and Zhang J. Advanced Engineering Informatics vol. 62, Elsevier.

Digital twin-based anomaly detection for real-time tool condition monitoring in machining. Liu Z, Lang Z-Q, Gui Y, Zhu Y-P and Laalej H. Journal of Manufacturing Systems vol. 75, 163-173. Elsevier.

Fault Diagnosis of the Rolling Bearing by a Multi-Task Deep Learning Method Based on a Classifier Generative Adversarial Network.

Shen Z, Kong X, Cheng L, Wang R and Zhu Y. Sensors vol. 24, (4). Mdpi.

An Adaptive Deconvolution Method with Improve Enhanced Envelope Spectrum and Its Application for **Bearing Fault Feature Extraction.**

He F, Zheng C, Pang C, Zhao C, Yang M, Zhu Y, Luo Z, Luo H, Li L and Jiang H. Sensors vol. 24, (3). Mdpi.

A Data-Driven Modelling Approach and Uncertainty Analysis for Rotor System Health Assessment.

Zhao Y, Zhu Y-P and Han Q. Proceedings of The Unified Conference of Damas, Income and Tepen Conferences (Unified 2023) 247-258. Springer Nature.

Fast evaluation of generalized associated linear equations (GALEs) for nonlinear systems characterization and compensation.

Zhu Y-P, Liu Z, Zhang W and Zhang B. Journal of The Franklin Institute vol. 361, (2) 944-957. Elsevier.

Investigative Study of the Effect of Damping and Stiffness Nonlinearities on an Electromagnetic Energy Harvester at Low-Frequency Excitations.

Diala U, Zhu Y and Gunawardena R. Machines vol. 12, (1). Mdpi.

2023

Vibration Signal-Based Tool Condition Monitoring Using Regularized Sensor Data Modeling and Model Frequency Analysis.

Liu Z, Lang Z-Q, Gui Y, Zhu Y-P, Laalej H and Curtis D. *IEEE Transactions On Instrumentation and Measurement vol. 73, 1-13.Institute of Electrical and Electronics Engineers (IEEE).*

Fault Features Uncertainty Quantification With Parameters Uncertainties of Data-Driven Models and Its Application in Rotor Systems Condition Assessment.

Zhao Y, Zhu Y-P, Lin J, Han Q and Liu Y. *IEEE Transactions On Instrumentation and Measurement vol.* 73, 1-11. *Institute of Electrical and Electronics Engineers (IEEE).*

Lifelong Learning Meets Dynamic Processes: An Emerging Streaming Process Prediction Framework With Delayed Process Output Measurement.

Liu T, Chen S, Yang P, Zhu Y, Mercangz M and Harris CJ. *IEEE Transactions On Control Systems Technology vol.* 32, (2) 384-398. *Institute of Electrical and Electronics Engineers (IEEE)*.

A NARX Model-Based Condition Monitoring Method for Rotor Systems.

Gao Y, Yu C, Zhu Y-P and Luo Z. Sensors vol. 23, (15). Mdpi.

The evaluation of Nonlinear Output Frequency Response Functions based on tailored data-driven modelling for rotor condition monitoring.

Zhao Y, Zhu Y-P, Han Q and Liu Y. Mechanical Systems and Signal Processing vol. 197, Elsevier.

Efficient adaptive deep gradient RBF network for multi-output nonlinear and nonstationary industrial processes.

Liu T, Chen S, Yang P, Zhu Y and Harris CJ. Journal of Process Control vol. 126, 1-11. Elsevier.

Design assessments of complex systems based on design oriented modelling and uncertainty analysis. Yu C, Zhu Y-P, Luo H, Luo Z and Li L. *Mechanical Systems and Signal Processing vol. 188, Elsevier.*

Analysis and design of non-linear seismic isolation systems for building structuresAn overview. Zhu Y-P, Lang ZQ, Fujita K and Takewaki I. *Frontiers in Built Environment vol. 8, Frontiers.*

Unsupervised Detection of Tool Breakage: A Novel Approach Based on Time and Sensor Domain Data Analysis.

Gui Y, Lang Z-Q, Liu Z, Zhu Y, Laalej H and Curtis D. *IEEE Transactions On Instrumentation and Measurement vol.* 72, 1-13.Institute of Electrical and Electronics Engineers (IEEE).

2022

Sensor Data Modeling and Model Frequency Analysis for Detecting Cutting Tool Anomalies in Machining. Liu Z, Lang Z-Q, Zhu Y-P, Gui Y, Laalej H and Stammers J. *IEEE Transactions On Systems Man and Cybernetics Systems vol. 53, (5) 2641-2653.Institute of Electrical and Electronics Engineers (IEEE).*

A dynamic poroelastic model for auxetic polyurethane foams involving viscoelasticity and pneumatic damping effects in the linear regime.

Zhang Q, Yu X, Scarpa F, Barton D, Zhu Y, Lang Z-Q and Zhang D. *Mechanical Systems and Signal Processing vol.* 179, *Elsevier*.

Hysteretic behaviour of uniaxially thermoformed auxetic foams under 3-point bending low-frequency vibration.

Zhang Q, Yu X, Scarpa F, Barton D, Xia Y, Shaw A, Zhu Y and Lang Z-Q. *Nonlinear Dynamics vol. 111, (2)* 1019-1045. Springer Nature.

The design of nonlinear damped building isolation systems by using mobility analysis. Zhu Y-P, Lang ZQ, Fujita K and Takewaki I. *Frontiers in Built Environment vol. 8, Frontiers.*

Analysis of nonlinear vibrations and health assessment of a bearing-rotor with rub-impact based on a data-driven approach.

Zhao Y, Zhu Y-P, Lin J, Han Q and Liu Y. Journal of Sound and Vibration vol. 534, Elsevier.

Integrated Identification of the Nonlinear Autoregressive Models With Exogenous Inputs (NARX) for Engineering Systems Design.

Kadochnikova A, Zhu Y, Lang Z-Q and Kadirkamanathan V. *IEEE Transactions On Control Systems Technology vol.* 31, (1) 394-401. Institute of Electrical and Electronics Engineers (IEEE).

Impact properties of uniaxially thermoformed auxetic foams.

Zhang Q, Scarpa F, Barton D, Zhu Y, Lang Z-Q, Zhang D and Peng H-X. *International Journal of Impact Engineering* vol. 163, Elsevier.

Beneficial effects of antisymmetric nonlinear damping with application to energy harvesting and vibration isolation under general inputs.

Zhu Y-P and Lang ZQ. Nonlinear Dynamics vol. 108, (4) 2917-2933. Springer Nature.

Online Rotor Systems Condition Monitoring Using Nonlinear Output Frequency Response Functions Under Harmonic Excitations.

Zhu Y-P, Zhao Y-L, Lang ZQ, Liu Z-P and Liu Y. *IEEE Transactions On Industrial Informatics vol. 18*, (10) 6798-6808. *Institute of Electrical and Electronics Engineers (IEEE)*.

Nonlinear output frequency response functions: A new evaluation approach and applications to railway and manufacturing systems condition monitoring.

Zhu Y-P, Lang ZQ, Mao H-L and Laalej H. Mechanical Systems and Signal Processing vol. 163, Elsevier.

Modelling and Analysis of Complex System Dynamics Based on Orthogonal Matching Pursuit Algorithm. . Journal of Mechanical Engineering vol. 58, (19). Chinese Journal of Mechanical Engineering.

2021

Topological characteristics and mechanical properties of uniaxially thermoformed auxetic foam. Zhang Q, Lu W, Scarpa F, Barton D, Rankin K, Zhu Y, Lang Z-Q and Peng H-X. *Materials & Design vol. 211,. Elsevier.*

The Data-Driven Surrogate Model-Based Dynamic Design of Aeroengine Fan Systems. Zhu Y-P, Yuan J, Lang ZQ, Schwingshackl CW, Salles L and Kadirkamanathan V. *Journal of Engineering For Gas Turbines and Power vol. 143, (10).Asme International.*

An output-only ARX model-based sensor fusion framework on structural dynamic measurements using distributed optical fiber sensors and fiber Bragg grating sensors. Cheng L, Cigada A, Lang Z, Zappa E and Zhu Y. *Mechanical Systems and Signal Processing vol. 152, Elsevier.*

Nonlinear model standardization for the analysis and design of nonlinear systems with multiple equilibria. Zhu Y-P, Lang ZQ and Guo Y-Z. *Nonlinear Dynamics vol. 104, (3) 2553-2571.Springer Nature.*

Modeling of rotating machinery: A novel frequency sweep system identification approach. Li Y, Luo Z, He F, Zhu Y and Ge X. *Journal of Sound and Vibration vol. 494,.Elsevier.*

The analysis and design of nonlinear vibration isolators under both displacement and force excitations. Qiu Y, Zhu Y, Luo Z, Gao Y and Li Y. *Archive of Applied Mechanics vol. 91, (5) 2159-2178.Springer Nature.*

2020

Dynamics Analysis of Active Variable Stiffness Vibration Isolator for Whole-Spacecraft Systems Based on Nonlinear Output Frequency Response Functions.

Xu K, Zhang Y, Zhu Y, Zang J and Chen L. Acta Mechanica Solida Sinica vol. 33, (6) 731-743. Springer Nature.

Impact analysis of the multi-harmonic input splicing way based on the data-driven model.

Qiu Y, Luo Z, Ge X, Zhu Y and Gao Y. International Journal of Dynamics and Control vol. 8, (4) 1181-1188. Springer Nature.

A novel method to determine the coupling scaling laws of vibration characteristics for rotor-bearing systems.

Zhang W, Luo Z, Li Y and Zhu Y. Journal of Vibration and Control vol. 27, (21-22) 2630-2641. Sage Publications.

Large stiffness thermoformed open cell foams with auxeticity.

Zhang Q, Lu W, Scarpa F, Barton D, Lakes RS, Zhu Y, Lang Z and Peng H-X. *Applied Materials Today vol. 20, Elsevier.*

An improved transfer-matrix method on steady-state response analysis of the complex rotor-bearing system. Luo Z, Bian Z, Zhu Y and Liu H. *Nonlinear Dynamics vol. 102, (1) 101-113.Springer Nature.*

A fast technique using output only to localize and quantify multiple damages for multi-degree-of-freedom systems.

Cheng L, Fang W and Zhu Y. Structural Health Monitoring vol. 20, (1) 321-338. Sage Publications.

Semi-actively Implemented Non-linear Damping for Building Isolation Under Seismic Loadings. Zhu Y-P, Lang Z-Q, Kawanishi Y and Kohiyama M. *Frontiers in Built Environment vol. 6, Frontiers.*

A new convergence analysis for the Volterra series representation of nonlinear systems. Zhu Y-P and Lang ZQ. *Automatica vol. 111, Elsevier*.

Context-Aware Proactive 5G Load Balancing and Optimization for Urban Areas.

Ma B, Yang B, Zhu Y and Zhang J. *IEEE Access vol.* 8, 8405-8417. *Institute of Electrical and Electronics Engineers* (*IEEE*).

2019

Dynamic design of a nonlinear energy sink with NiTiNOL-steel wire ropes based on nonlinear output frequency response functions.

Zhang Y, Xu K, Zang J, Ni Z, Zhu Y and Chen L. Applied Mathematics and Mechanics vol. 40, (12) 1791-1804. Springer Nature.

Design of Distortion Similar Model for Thin-Walled Conical Shell and Method for Determining Geometric Interval.

Luo Z, Zhang YQ, Zhu YP and Li CS. Dongbei Daxue Xuebao/Journal of Northeastern University vol. 40, (11) 1600-1605.

A novel data-driven model based parameter estimation of nonlinear systems.

Ge X, Luo Z, Ma Y, Liu H and Zhu Y. Journal of Sound and Vibration vol. 453, 188-200. Elsevier.

Prediction of vibration characteristics of blisks using similitude models.

Luo Z, Wang Y, Zhai J, Zhu Y and Wang D. *Mechanics Based Design of Structures and Machines vol.* 47, (2) 121-135.Taylor & Francis.

Synchronization and Stability of Two Pairs of Reversed Rotating Exciters Mounted on Two Different Rigid Frames.

Zhang X, Wang Z, Zhu Y, Xu J and Wen B-C. *IEEE Access vol.* 7, 115348-115367.*Institute of Electrical and Electronics Engineers (IEEE)*.

2018

Identification of the dynamic parametrical model with an iterative orthogonal forward regression algorithm. Liu H, Zhu Y, Luo Z and Wang F. *Applied Mathematical Modelling vol. 64, 643-653.Elsevier.*

The analysis of nonlinear systems in the frequency domain using Nonlinear Output Frequency Response Functions.

Bayma RS, Zhu Y and Lang Z-Q. Automatica vol. 94, 452-457. Elsevier.

Comparison of rubbing induced vibration responses using varying-thickness-twisted shell and solid-element blade models.

Sun Q, Ma H, Zhu Y, Han Q and Wen B. Mechanical Systems and Signal Processing vol. 108, 1-20. Elsevier.

The effects of linear and nonlinear characteristic parameters on the output frequency responses of nonlinear systems: The associated output frequency response function.

Zhu Y and Lang ZQ. Automatica vol. 93, 422-427. Elsevier.

Nonlinear damping based semi-active building isolation system.

Ho C, Zhu Y, Lang Z-Q, Billings SA, Kohiyama M and Wakayama S. *Journal of Sound and Vibration vol. 424, 302-317.Elsevier*.

Dynamic Parametrical Modeling Method of Nonlinear Systems with Multiple Outputs Based on REFOR Algorithm.

LUO Z. Journal of Mechanical Engineering vol. 54, (23). Chinese Journal of Mechanical Engineering.

2017

Meshing characteristics of spur gear pair under different crack types. Li Z, Ma H, Feng M, Zhu Y and Wen B. *Engineering Failure Analysis vol. 80, 123-140.Elsevier.*

PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems. Liu H, Zhu Y, Luo Z and Han Q. *Frontiers of Mechanical Engineering vol. 13, (3) 390-400.Springer Nature.*

The NARX Model-Based System Identification on Nonlinear, Rotor-Bearing Systems. Ma Y, Liu H, Zhu Y, Wang F and Luo Z. *Applied Sciences vol.* 7, (9).*Mdpi*.

Design of Nonlinear Systems in the Frequency Domain: An Output Frequency Response Function-Based Approach.

Zhu Y and Lang ZQ. IEEE Transactions On Control Systems Technology vol. 26, (4) 1358-1371. Institute of Electrical and Electronics Engineers (IEEE).

Modeling method on dynamic parametrical model of nonlinear multi-degree of freedom systems. Liu H, Zhu Y, Luo Z and Han Q. *Journal of Dynamics and Control vol. 15, (1) 15-24.*

Similitude design for the vibration problems of plates and shells: A review.

Zhu Y, Wang Y, Luo Z, Han Q and Wang D. Frontiers of Mechanical Engineering vol. 12, (2) 253-264. Springer Nature.

2016

A comprehensive reliability allocation method for series systems based on failure mode and effects analysis transformed functions.

Yang Z, Liu P, Zhu Y and Zhang Y. Proceedings of The Institution of Mechanical Engineers Part B Journal of Engineering Manufacture vol. 230, (12) 2239-2248. Sage Publications.

Accurate prediction approach of dynamic characteristics for a rotating thin walled annular plate considering the centrifugal stress requirement.

Luo Z, Wang Y, Zhai J and Zhu Y. Journal of Vibroengineering vol. 18, (5) 3104-3116. Jve International.

Dynamic Similitude Design Method of the Distorted Model on Variable Thickness Cantilever Plates. Luo Z, Zhu Y, Liu H and Wang D. *Applied Sciences vol. 6, (8).Mdpi.*

Review and Prospect for Dynamic Similitude Theory and its Applications in the Structure Vibration. LUO Z. Journal of Mechanical Engineering vol. 52, (23). Chinese Journal of Mechanical Engineering.

Considering the Requirements of Static Strength for the Rotating Straight Blade Similar Experimental Model Design Method.

LUO Z. Journal of Mechanical Engineering vol. 52, (9). Chinese Journal of Mechanical Engineering.

A comprehensive reliability allocation method for numerical-controlled lathes based on copula function. Yang Z, Zhu YP, Zhang YM and Ren HR. *Binggong Xuebao/Acta Armamentarii vol. 37, (1) 131-140.*

2015

The Dynamic Similitude Design Method of Thin Walled Structures and Experimental Validation. Luo Z, Wang Y, Zhu Y and Wang D. *Shock and Vibration vol. 2016, (1) 1-11.Hindawi.*

Determining Dynamic Scaling Laws of Geometrically Distorted Scaled Models of a Cantilever Plate.

Luo Z, Zhu Y, Zhao X and Wang D. Journal of Engineering Mechanics vol. 142, (4). American Society of Civil Engineers (Asce).

Design method and revising strategy of inherent characteristics for dynamical similarity test model of blade. Luo Z, Guo J, Zhu YP and Wang DY. *Hangkong Dongli Xuebao/Journal of Aerospace Power vol. 30, (7) 1611-1617.*

The similitude design method of thin-walled annular plates and determination of structural size intervals.

Luo Z, Wang Y, Zhu Y, Zhao X and Wang D. Proceedings of The Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science vol. 230, (13) 2158-2168. Sage Publications.

High-Order Vibrations Dynamic Scaling Laws of Distorted Scaled Models of Thin-Walled Short Cylindrical Shells.

Luo Z, Zhu YP, Zhao XY and Wang DY. *Mechanics Based Design of Structures and Machines vol. 43, (4) 514-534. Taylor & Francis.*

The dynamic similitude design of a thin-walled cylindrical shell by considering the strength requirement. Zhu Y, Luo Z, Zhao X and Wang D. *Proceedings of The Institution of Mechanical Engineers Part G Journal of*

Zhu Y, Luo Z, Zhao X and Wang D. Proceedings of The Institution of Mechanical Engineers Part G Journal of Aerospace Engineering vol. 230, (2) 234-243. Sage Publications.

Comprehensive reliability allocation method for CNC lathes based on cubic transformed functions of failure mode and effects analysis.

Yang Z, Zhu Y, Ren H and Zhang Y. Chinese Journal of Mechanical Engineering vol. 28, (2) 315-324. Chinese Journal of Mechanical Engineering.

Determination Method of the Structure Size Intervals of Dynamic Distorted Model of Elastic Cantilever Thin Plate.

Luo Z, Zhu Y, Chen X and Zhao X. Advances in Mechanical Engineering vol. 2014, 791047-791047.Sage Publications.

Structure Size Interval of Sinmilar Test Model of the Laminated Composite Thin-wall Short Cylinder Shell. LUO Z. Journal of Mechanical Engineering vol. 51, (17). Chinese Journal of Mechanical Engineering.

2014

The Dynamic Similitude Design of a Thin-Wall Cylindrical Shell with Sealing Teeth and Its Geometrically Distorted Model.

Luo Z, Zhu Y, Han Q and Wang D. Advances in Mechanical Engineering vol. 7, (2). Sage Publications.

Determination method of dynamic distorted scaling laws and applicable structure size intervals of a rotating thin-wall short cylindrical shell.

Luo Z, Zhu Y, Zhao X and Wang D. Proceedings of The Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science vol. 229, (5) 806-817.Sage Publications.

Determination method of the structure size interval of dynamically similar models for predicting vibration characteristics of the coated thin plates.

Zhu Y, Luo Z, Zhao X and Han Q. Proceedings of The Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science vol. 229, (1) 59-68.Sage Publications.

Study of the Structure Size Interval of Similar Test Model of the Laminated Composite Plate.

LUO Z. Journal of Mechanical Engineering vol. 50, (9). Chinese Journal of Mechanical Engineering.