Prof David Lee
BSc (Hons), MA, PhD

 
 
 

Research Funding

On this page:

Previous Funded Research Projects

University Enterprise Zone Bid

Funding source: RE Research England (RE)
Start: 01-08-2019  /  End: 31-07-2020

Does the biological clock within cartilage align to diurnal patterns in activity?

Funding source: EPSRC Engineering and Physical Sciences Research Council
Start: 01-10-2019  /  End: 31-03-2020

Mechno-regulation of genome function to direct stem cell rate

Funding source: B.B.S.R.C.
Start: 01-01-2017  /  End: 31-12-2019

Mechno-regulation of genome function to direct stem cell rate

Hydrothermal Biomass Upgrade into Carbon Materials and Leuvinic Acid for Sustainable Catalysis - HydroCat Marie Curie (CIG)

Funding source: Commission of the European Community
Start: 01-03-2014  /  End: 31-08-2018

SuprHApolymers - Engineering macromolecular self-assembly of hyaluronan (HA)-based glycopolymers with peptides

Funding source: Marie Curie Career Integration Grant (FP7)/European Union
Start: 01-03-2014  /  End: 28-02-2018

“SuprHApolymers” project aims to design and synthesize glycopolymers mimicking the composition and structure of hyaluronan (HA), a linear polysaccharide composed of repeating disaccharide units of N-acetyl-glucosamine and glucuronic acid but with many important biological functions. These HA synthetic analogues will be explored for applications in synthetic biology and biomedicine.

Effect of cell age on cell migration and cytoskeletal reorganization’

Funding source: Dunhill Medical Trust
Start: 01-04-2016  /  End: 30-09-2017

Effect of cell age on cell migration and cytoskeletal reorganization

CSKFingerprints

Funding source: Commission of the European Community
Start: 01-05-2014  /  End: 30-04-2017

Use cytoskeletal morphometrics to characterize cell function, behaviour and pathologies

Novel dynamic self-assembling system - BIOMORPH

Funding source: Commission of the European Community
Start: 01-04-2014  /  End: 31-03-2017

The project aims to invetigate the molecular mechanisms between peptides and proteins t create dynamic materials

Optimal Cartilage Regeneration

Funding source: Dunhill Medical Trust
Start: 01-11-2014  /  End: 31-12-2016

Multiscale Mechanobiology for Tissue Engineering

Funding source: EPSRC
Start: 01-09-2007  /  End: 31-08-2012

Platform Grant Strategic Research Areas i). Mechanics and mechano-signalling at the sub-cellular, cellular and tissue levels. The response of living cells and tissues to mechanical forces is critical to tissue health and homeostasis. Consequently this field of mechanobiology has enormous potential to be exploited in the development of Tissue Engineering ...

Mechanoregulation of nuclear architecture and genome function: A novel mechanism in stem cell fate (Human Frontier Science Program funded)

Funding source: Human Frontier Science Program
Start: 01-06-2009  /  End: 31-05-2010

Gene expression can be regulated through alterations in nuclear architecture, providing control of genome function. Mechanical loading induces both nuclear deformation and alteration in gene expression in a variety of cell types. One putative transduction mechanism for this phenomenon involves alterations to nuclear architecture...

Previous PhD Studentship Projects

FlowMat Marie Curie (CIG)

Funding source: Commission of the European Community
Start: 01-08-2013  /  End: 01-08-2017

The role of membrane-actin adhesion in regulating stem cell viscoelastic properties and blebability during differentiation

Funding source: EPSRC
Start: 09-01-2012  /  End: 10-01-2015

This PhD examines how chondrogenic differentiation of human mesenchymal stem cells (hMSCs) regulates the interaction between the cell membrane and the actin cortex, thereby controlling cell biomechanics. The thesis also investigates the viscoelastic properties of primary articular chondrocytes and the effect of de...

Other Research Projects

Mechano-regulation of genome function to direct stem cell fate

This project addresses the concept that the nucleus acts as a sensor for mechanical stimuli. By characterising biophysical and epigenetic changes as stem cells differentiate, we will identify pathways responsible for the alteration of cellular mechanosensitivity. These can then be targeted to repair defective mechanosensitivity in diseased or aged cells.

Cell and Tissue Engineering

Articular cartilage, mechanotransduction, cytoskeletal dynamics, calcium signalling, chondrocytes in agarose gel, confocal microscopy.