2017

Use of a fluorescent probe to monitor the enhanced affinity of rh-BMP-2 to silicated-calcium phosphate synthetic bone graft substitutes under competitive conditions.
Mafina MK, Sullivan AC and Hing KA. *Materials Science and Engineering C* vol. 80, 207-212.

The effect of the incorporation of fluoride into strontium containing bioactive glasses.

2016

Porous Bone Graft Substitutes: When Less is More.
Campion C and Hing KA. *Mechanobiology: Exploitation For Medical Benefit*.

Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate.

The effect of increased microporosity on bone formation within silicate-substituted scaffolds in an ovine posterolateral spinal fusion model.

2015

Efficacy of silicate-substituted calcium phosphate with enhanced strut porosity as a standalone bone graft substitute and autograft extender in an ovine distal femoral critical defect model.

Apatite formation of bioactive glasses is enhanced by low additions of fluoride but delayed in the presence of serum proteins.

2014

2013

HMSC proliferation and differentiation are dependent on chemistry and surface roughness of calcium phosphate bone substitutes.
Development of novel fluorescent probes for the analysis of protein interactions under physiological conditions with medical devices.

Antibacterial effect of incorporating silver ions in electrochemically deposited hydroxyapatite coating: An experimental study.
Ghani Y, Coathup MJ, Hing KA and Blunn GW. *Jrsm Short Rep* vol. 4, (9).

Influence of cell culture medium composition on in vitro dissolution behavior of a fluoride-containing bioactive glass.

Biomimetic bone regeneration.
Hing KA.

2012

Development of a hydroxyapatite coating containing silver for the prevention of peri-prosthetic infection.

Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction.

The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials.

Microstructure and chemistry affects apatite nucleation on calcium phosphate bone graft substitutes.

2011

The osteoinductivity of silicate-substituted calcium phosphate.

The quantitative and qualitative analysis bone ingrowth network quality of hydroxyapatite implants over time to investigate the process of internal bone growth via novel automated 3D image processing.
Parish A, Davis G and Hing K. *24th European Conference On Biomaterials - Annual Conference of The European Society For Biomaterials*.

Fibronectin adsorption to stoichiometric and silicate substituted hydroxyapatite sensitive to FN concentration and presence of serum proteins.
Castagna V, Sullivan A and Hing K. *24th European Conference On Biomaterials - Annual Conference of The European Society For Biomaterials*.

Effects of serum protein on ionic exchange between culture medium and microporous hydroxyapatite and silicate-substituted hydroxyapatite.

Increasing strut porosity in silicate-substituted calcium-phosphate bone graft substitutes enhances osteogenesis.

Behaviour of fibronectin on interaction with stoichiometric and silicate substituted hydroxyapatite bone graft substitutes.
Castagna V, Sullivan A and Hing KA. *European Cells and Materials* vol. 22, (SUPPL.2).

Recording and evaluating the effect of silicon-substitution on protein adsorption/desorption to hydroxyapatite.
Mafina MK, Sullivan AC and Hing KA. *European Cells and Materials* vol. 22, (SUPPL.2).
Automated computation of 3D histomorphometry within implanted hydroxyapatite porous scaffolds.
Parish AJB, Davis GR and Hing KA. European Cells and Materials vol. 22, (SUPPL.2).
2010

Tissue engineering.

Surface physiochemistry affects protein adsorption to stoichiometric and silicate-substituted microporous hydroxyapatites.

Effect of silicate-substitution on attachment and early development of human osteoblast-like cells seeded on microporous hydroxyapatite discs.
2009

Monitoring the effect of silicate substitution on protein adsorption/desorption to hydroxyapatite.
Mafina MK, Sullivan AC and Hing KA. European Cells and Materials vol. 18, (SUPPL. 2).
2008

Osseoinduction by calcium phosphate bone substitutes is a function of chemical composition and structure.

Biomaterials - Where biology, physics, chemistry, engineering and medicine meet.

Nano-scale manipulation of silicate-substituted apatite chemistry impacts surface charge, hydrophilicity, protein adsorption and cell attachment.
2007

Comparative performance of three ceramic bone graft substitutes.
Hing KA, Wilson LF and Buckland T. Spine J vol. 7, (4) 475-490.
2006

Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds.
Hing KA, Revell PA, Smith N and Buckland T. Biomaterials vol. 27, (29) 5014-5026.

In vitro testing of Nd : YAG laser processed calcium phosphate coatings.
2005

Surface charge and the effect of excess calcium ions on the hydroxyapatite surface.
Harding IS, Rashid N and Hing KA. Biomaterials vol. 26, (34) 6818-6826.

Hydroxyapatite promotes superior keratocyte adhesion and proliferation in comparison with current keratoprosthesis skirt materials.

Microporosity enhances bioactivity of synthetic bone graft substitutes.
Bioceramic bone graft substitutes: Influence of porosity and chemistry.
Hing KA. *Int J Appl Ceram Tec* vol. 2, (3) 184-199.

2004

Bone repair in the twenty-first century: biology, chemistry or engineering?.

Effect of silicate substitution on the surface charge of hydroxyapatite.
Rashid N, Harding I and Hing KA. *Transactions - 7th World Biomaterials Congress.*

Bone development is sensitive to silicon level in substituted apatites.
Hing KA, Saeed S, Annaz B, Buckland T and Revell PA. *Transactions - 7th World Biomaterials Congress.*

Microporosity enhances bioactivity of synthetic bone graft substitutes.
Hing KA, Saeed S, Annaz B, Buckland T and Revell PA. *Transactions - 7th World Biomaterials Congress.*

HA activates T cells and causes inflammation in liver and spleen from rabbits following intraosseous implantation.
Saeed S, Hing K and Revell PA. *Transactions - 7th World Biomaterials Congress.*

The role of microporosity in synthetic porous ceramics.
Annaz B, Hing KA, Kayser M, Buckland T and Di Silvio L. *Transactions - 7th World Biomaterials Congress.*

An ultrastructural study of cellular response to variation in porosity in phase-pure hydroxyapatite.

Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study.
Annaz B, Hing KA, Kayser M, Buckland T and Di Silvio L. *J Microsc* vol. 215, (Pt 1) 100-110.

Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes.

Novel Bioceramic Foams For Bone Grafting.
HING KA, Revell PA, McInness T and Damien E. *Journal of Bone & Joint Surgery - British Volume* vol. 86-B Suppl I:II.

Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes.

2003

A preliminary study on the enhancement of the osteointegration of a novel synthetic hydroxyapatite scaffold in vivo.

Calcium phosphate coatings obtained by Nd:YAG laser cladding: physicochemical and biologic properties.

2002

A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules.

2001

Insulin like growth factor (IGF-I) increases the bioactivity of porous hydroxyapatite (PHA) in vivo in rabbits.
Damien E, MacInnes T, Hing K and Revell PA. *J Pathol* vol. 193, 6A-6A.
1999

Quantification of bone ingrowth within bone-derived porous hydroxyapatite implants of varying density.

Characterization of porous hydroxyapatite.

Macroporous hydroxyapatites: Potential drug delivery systems.

1998

Prize-winning peeks at the microscopic world.
Hing K and Knight M.

Histomorphological and biomechanical characterization of calcium phosphates in the osseous environment.

1997

Biomechanical assessment of bone ingrowth in porous hydroxyapatite.

1996

Histomorphometric and biomechanical assessment of bone ingrowth in porous hydroxyapatite.
Hing KA, Best SM, Revell PA, Tanner KE and Bonfield W. *Transactions of The Annual Meeting of The Society For Biomaterials in Conjunction With The International Biomaterials Symposium* vol. 2.

Assessment of porous hydroxyapatite for bone replacement.
HING KA. Editors: Best SM and Bonfield W.