2021

Can Achilles tendon xanthoma be distinguished from Achilles tendinopathy using Dixon method MRI? A cross-sectional exploratory study.

Structure-function specialisation of the interfascicular matrix in the human achilles tendon.

The Impact of Hypercholesterolemia on Tendon Injury Repair.

Elastase treatment of tendon specifically impacts the mechanical properties of the interfascicular matrix.

8 Computational modelling of muscle, tendon, and ligaments biomechanics.
Siebert T, Screen HRC and Rode C. Computational Modelling of Biomechanics and Biotribology in The Musculoskeletal System.

2020

Postnatal mechanical loading drives adaptation of tissues primarily through modulation of the non-collagenous matrix.

Force Transmission Between the Gastrocnemius and Soleus Sub-Tendons of the Achilles Tendon in Rat.

Patellar tendinopathy outcome predictors in jumping athletes: feasibility of measures for a cohort study.

A recruitment model of tendon viscoelasticity that incorporates fibril creep and explains strain-dependent relaxation.

2019

An in vitro investigation into the effects of 10Hz cyclic loading on tenocyte metabolism.

Magnetic resonance elastography in nonlinear viscoelastic materials under load.
Insights into the micromechanics of stress-relaxation and creep behaviours in the aortic valve.

2018

Mechanical loading induces primary cilia disassembly in tendon cells via TGFβ and HDAC6.
Rowson DT, Shelton JC, Screen HRC and Knight MM. Scientific Reports vol. 8, (1).

Guided Cell Attachment via Aligned Electrospinning of Glycopolymers.
Liu R, Becer CR and Screen HRC. Macromolecular Bioscience vol. 18, (12).

Postnatal Development of the Functional Specialization of the Equine Superficial Digital Flexor Tendon.
Clegg P, Zamboulis D and Screen H. Veterinary and Comparative Orthopaedics and Traumatology vol. 31, (S 02) a1-a25.

Tendon pathology: Have we missed the first step in the development of pathology?.

Effects of cell adhesion motif, fiber stiffness, and cyclic strain on tenocyte gene expression in a tendon mimetic fiber composite hydrogel.

Structure and collagen crimp patterns of functionally distinct equine tendons, revealed by quantitative polarised light microscopy (qPLM).
Spiesz EM, Thorpe CT, Thurner PJ and Screen HRC. Acta Biomaterialia vol. 70, 281-292.

2017

Elastin is Localised to the Interfascicular Matrix of Energy Storing Tendons and Becomes Increasingly Disorganised With Ageing.
Godinho MSC, Thorpe CT, Greenwald SE and Screen HRC. Scientific Reports vol. 7, (1).

The relative compliance of energy-storing tendons may be due to the helical fibril arrangement of their fascicles.

Fascicles and the interfascicular matrix show decreased fatigue life with ageing in energy storing tendons.
Thorpe CT, Riley GP, Birch HL, Clegg PD and Screen HRC. Acta Biomaterialia vol. 56, 58-64.

A2B-Miktoarm Glycopolymer Fibers and Their Interactions with Tenocytes.

Recapitulating the Micromechanical Behavior of Tension and Shear in a Biomimetic Hydrogel for Controlling Tenocyte Response.

Development of a two-stage gene selection method that incorporates a novel hybrid approach using the cuckoo optimization algorithm and harmony search for cancer classification.

A transverse isotropic viscoelastic constitutive model for aortic valve tissue.

Structural building blocks of soft tissues: Tendons and heart valves.
Gupta HS and Screen HRC. Cism International Centre For Mechanical Sciences, Courses and Lectures.

2016

Elastin is more abundant in energy storing tendons and is localised to the tendon interfascicular matrix.

Nomenclature of the tendon hierarchy: An overview of inconsistent terminology and a proposed size-based naming scheme with terminology for multi-muscle tendons.

Handsfield GG, Slane LC and Screen HRC. *Journal of Biomechanics* vol. 49, (13) 3122-3124.

The effect of gradations in mineral content, matrix alignment, and applied strain on human mesenchymal stem cell morphology within collagen biomaterials.

Distribution of proteins within different compartments of tendon varies according to tendon type.

Thorpe CT, Karunaseelan KJ, Ng Chieng Hin J, Riley GP, Birch HL, Clegg PD and Screen HRC. *Journal of Anatomy* vol. 229, (3) 450-458.

Zonal variation in primary cilia elongation correlates with localized biomechanical degradation in stress deprived tendon.

Rowson D, Knight MM and Screen HRC. *J Orthop Res* vol. 34, (12) 2146-2153.

The use of medical infrared thermography in the detection of tendinopathy: a systematic review.

Anatomical heterogeneity of tendon: Fascicular and interfascicular tendon compartments have distinct proteomic composition.

Thorpe CT, Peffers MJ, Simpson D, Halliwell E, Screen HRC and Clegg PD. *Scientific Reports* vol. 6.

Tendon structure and composition.

Thorpe CT and Screen HRC. *Advances in Experimental Medicine and Biology* vol. 920, 3-10.

2015

The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons.

Thorpe CT, Godinho MSC, Riley GP, Birch HL, Clegg PD and Screen HRC. *Journal of The Mechanical Behavior of Biomedical Materials* vol. 52, 85-94.

Cancer classification using a novel gene selection approach by means of shuffling based on data clustering with optimization.

Eccentric and concentric exercise of the triceps surae: An in vivo study of dynamic muscle and tendon biomechanical parameters.

Chaudhry S, Morrissey D, Woledge RC, Bader DL and Screen HRC. *Journal of Applied Biomechanics* vol. 31, (2) 69-78.

Eccentric and Concentric Exercise of the Triceps Surae: An in Vivo Study of Dynamic Muscle and Tendon Biomechanical Parameters.

Chaudhry S, Morrissey D, Woledge RC, Bader DL and Screen HRC. *J Appl Biomech* vol. 31, (2) 69-78.

The effectiveness of extracorporeal shock wave therapy in lower limb tendinopathy: a systematic review.

Science in brief: Recent advances into understanding tendon function and injury risk.

Thorpe CT, Spiesz EM, Chaudhry S, Screen HRC and Clegg PD. *Equine Veterinary Journal* vol. 47, (2) 137-140.

Tendon overload results in alterations in cell shape and increased markers of inflammation and matrix degradation.

Chapter 1 Tendon Physiology and Mechanical Behavior Structure-Function Relationships. Thorpe CT, Birch HL, Clegg PD and Screen HRC. Tendon Regeneration.

2014

Early stage fatigue damage occurs in bovine tendon fascicles in the absence of changes in mechanics at either the gross or micro-structural level. Shepherd JH, Riley GP and Screen HRC. J Mech Behav Biomed Mater vol. 38, 163-172.

98 Early Inflammatory Response Of Tenocytes To Overload. Spiesz EM, Thorpe CT, Chaudhry S, Riley GP, Birch HL, Clegg PD and Screen HR. British Journal of Sports Medicine vol. 48, (Suppl 2) a63-a64.

89 Primary Cilia In Tenocytes From The Inter-fascicular Matrix And The Fascicular Matrix. Rowson D, Knight M and Screen H. British Journal of Sports Medicine vol. 48, (Suppl 2) a58-a59.

Achillessehnentendinopathie. Morrissey D, Morton S, Anuj CA and Screen H. Sportphysio vol. 02, (03) 105-111.

Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading. Thorpe CT, Riley GP, Birch HL, Clegg PD and Screen HRC. Journal of The Royal Society Interface vol. 11, (92).

2013

Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return.
Thorpe CT, Klemt C, Riley GP, Birch HL, Clegg PD and Screen HRC. *Acta Biomater* vol. 9, (8) 7948-7956.

The role of the non-collagenous matrix in tendon function.

Fatigue loading of tendon.

GAG depletion increases the stress-relaxation response of tendon fascicles, but does not influence recovery.
Legerlotz K, Riley GP and Screen HRC. *Acta Biomater* vol. 9, (6) 6860-6866.

Response to letter to the editor: End effects in mechanical testing of biomaterials.
Anssari-Benam A, Legerlotz K, Bader DL and Screen HRC. *Journal of Biomechanics* vol. 46, (5).

Cyclic loading of tendon fascicles using a novel fatigue loading system increases interleukin-6 expression by tenocytes.

Capacity for sliding between tendon fascicles decreases with ageing in injury prone equine tendons: a possible mechanism for age-related tendinopathy?.
Thorpe CT, Udeze CP, Birch HL, Clegg PD and Screen HRC. *Eur Cell Mater* vol. 25, 48-60.

Microstructural stress relaxation mechanics in functionally different tendons.

Microstructural stress relaxation mechanics in functionally different tendons.
Screen HRC, Toorani S and Shelton JC. *Medical Engineering and Physics* vol. 35, (1) 96-102.

Response to letter to the editor: End effects in mechanical testing of biomaterials.
Anssari-Benam A, Legerlotz K, Bader DL and Screen HRC. *Journal of Biomechanics*.

Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return.

2012

Specialization of tendon mechanical properties results from interfascicular differences.
Thorpe CT, Udeze CP, Birch HL, Clegg PD and Screen HRC. *Journal of The Royal Society Interface* vol. 9, (76) 3108-3117.

On the specimen length dependency of tensile mechanical properties in soft tissues: gripping effects and the characteristic decay length.

Structure and Biomechanics of Biological Composites.
Screen HRC and Tanner KE. *Wiley Encyclopedia of Composites*.

Increased expression of IL-6 family members in tendon pathology.
Legerlotz K, Jones ER, Screen HRC and Riley GP. *Rheumatology* vol. 51, (7) 1161-1165.
Strain transfer through the aortic valve.

Coronal plane hip muscle activation in football code athletes with chronic adductor groin strain injury during standing hip flexion.

2011

Extrafibrillar diffusion and intrafibrillar swelling at the nanoscale are associated with stress relaxation in the soft collagenous matrix tissue of tendons.

Nonlinearities in soft tissue strain.

Anisotropic time-dependant behaviour of the aortic valve.

Anisotropic strain transfer through the aortic valve and its relevance to the cellular mechanical environment.

The effect of eccentric and concentric calf muscle training on Achilles tendon stiffness.

A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation.

The effect of loading speed on the force frequency spectrum during eccentric & concentric calf exercise.

The effect of eccentric and concentric loading speed on the normal achilles tendon: an in vivo biomechanical study.

Anisotropic strain transfer through the aortic valve and its relevance to the cellular mechanical environment.

2010

Specimen dimensions influence the measurement of material properties in tendon fascicles.
Legerlotz K, Riley GP and Screen HRC. *Journal of Biomechanics* vol. 43, (12) 2274-2280.

Characterization of a novel fiber composite material for mechanotransduction research of fibrous connective tissues.

In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen.

2009

Measuring strain distributions in the tendon using confocal microscopy and finite elements.
Screen HRC and Evans SL. *J Strain Anal Eng* vol. 44, (5) 327-335.
Hierarchical approaches to understanding tendon mechanics.

2008

Characterizing structure-function relationships in tendon.
Toorani S, Shelton JC and Screen HRC. 8th World Biomaterials Congress 2008 vol. 2.

Investigating load relaxation mechanics in tendon.

2007

The micro-structural strain response of tendon.

Strain mechanisms in tendon fascicles.
SCREEN HRC and Cheng VWT. J.Mat.Sci. vol. 21, 8957-8965.

2006

The influence of swelling and matrix degradation on the microstructural integrity of tendon.

2005

Cyclic mechanical conditioning of isolated tendon fascicles results in an upregulation of collagen production.

Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles.

The influence of noncollagenous matrix components on the micromechanical environment of tendon fascicles.

2004

Local Strain Measurement within Tendon.

An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties.

2003

Development of a technique to determine strains in tendons using the cell nuclei.

2002

Development of a technique to determine strains in tendons using the cell nuclei.
Non-collagenous matrix components influence the micromechanical environment of tenocytes within tendon fascicles subjected to tensile strain.

Non-collagenous matrix components influence the micro-mechanical environment of tenocytes within tendon fascicles subjected to tensile strain.
Bader DL, Shelton JC, LEE DA and Screen HRC. *Eur. Cells Materials* vol. 4 suppl 1, 41-42.