2019

Self-Assembling Hydrogels Based on a Complementary Host-Guest Peptide Amphiphile Pair.

Targeting mechanotransduction mechanisms and tissue weakening signals in the human amniotic membrane.

2018

Protein disorder-order interplay to guide the growth of hierarchical mineralized structures.


Claim to FAME.

Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in materials design.
MATA A. Chemical Society Reviews. Royal Society of Chemistry.

Hydrodynamically Guided Hierarchical Self-Assembly of Peptide-Protein Bioinks.

3D Electrophoresis-Assisted Lithography (3DEAL): 3D Molecular Printing to Create Functional Patterns and Anisotropic Hydrogels.

A fluidic device for the controlled formation and real-time monitoring of soft membranes self-assembled at liquid interfaces.

2017

Trauma induces overexpression of Cx43 in human fetal membrane defects.
Nanostructured interfacial self-assembled peptide-polymer membranes for enhanced mineralization and cell adhesion.

Elastin-Like Protein, with Statherin Derived Peptide, Controls Fluorapatite Formation and Morphology.

New Bioengineering Breakthroughs and Enabling Tools in Regenerative Medicine.

Cross-linking of a biopolymer-peptide co-assembling system.

Bone and cartilage differentiation of a single stem cell population driven by material interface.

Connexin 43 is overexpressed in human fetal membrane defects after fetoscopic surgery.

Injectable Hyaluronan Hydrogels with Peptide-Binding Dendrimers Modulate the Controlled Release of BMP-2 and TGF-71.

Effective and durable genetic modification of human mesenchymal stem cells via controlled release of rAAV vectors from self-assembling peptide hydrogels with a maintained differentiation potency.

Bimolecular based heparin and self-assembling hydrogel for tissue engineering applications.

Copper catalyst efficiency for the CuAAC synthesis of a poly(N-isopropylacrylamide) conjugated hyaluronan.

Multivalent dendrimers presenting spatially controlled clusters of binding epitopes in thermoresponsive hyaluronan hydrogels.
Mineralization and bone regeneration using a bioactive elastin-like recombinamer membrane.

3D electrophoresis-assisted lithography (3DEAL) for patterning hydrogel environments.

Binding epitope decorated dendrimers in thermoreponsive hyaluronic acid hydrogels influence stem cells.

Bioactive membranes for bone regeneration applications: effect of physical and biomolecular signals on mesenchymal stem cell behavior.

2013

Fabrication of hierarchical micro-nanotopographies for cell attachment studies.

Co-assembled and microfabricated bioactive membranes.

TISSUE ENGINEERING FOR ARTICULAR CARTILAGE REPAIR - THE STATE OF THE ART.

2012

A top-down/bottom-up strategy to develop a bioactive periostium graft.

Spontaneous co-assembly of molecularly designed building blocks into hierarchically ordered, dynamic, hybrid macrotubes.

Biofunctionalization of biopolymers with peptide conjugated dendrons.

Engineering membrane scaffolds with both physical and biomolecular signaling.

Design of biomolecules for nanoengineered biomaterials for regenerative medicine.

2011

Preparation and characterization of glutaraldehyde-cross-linked RGD-containing elastin-like polymer matrices.

Designing a multifunctional, thermoreversible hyaluronan-based hydrogel scaffold for tissue regeneration.

Micro and nanotechnologies for bioengineering regenerative medicine scaffolds. Mata A. International Journal of Biomedical Engineering and Technology vol. 5, (2-3) 266-291.


2010


2009


2008


2007


2006

2005

Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems.
Mata A, Fleischman AJ and Roy S. *Biomedical Microdevices* vol. 7, (4) 281-293.

Fabrication of 3D micro-textured scaffolds for tissue engineering.

Expanding Frontiers in Biomaterials.

Microfabricated 3D scaffolds for tissue engineering applications.

2003

Osteoblast attachment to a textured surface in the absence of exogenous adhesion proteins.

2002

Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces.

Analysis of connective tissue progenitor cell behavior on polydimethylsiloxane smooth and channel micro-textures.