'Squashing Bugs, Not Snakes':
Co-creating a Python toolkit to
develop students’ programming
proficiency

‘eQ_s’ Queen Mary

University of London

Muhie Al Haimus, Yash Vaghela, llanthiraiyan Sivagnanamoorthy and Dr. Rehan Shah

INTRODUCTION & MOTIVATION

Author: Muhie
Date: 21/05/24
Explanation of the program: A program that finds fractions
def get_valid_input(message, zero_check):
valid_input = False
while valid_input == False:
user_input = int(input(message))
if zero_check == False:
return user_input
if user_input != 0:
valid_input = True
return user_input
print("Invalid input, you cannot divide by zero, plese try again")

Feedback from first-year engineering studer@
at QMUL revealed that they found
programming rather difficult, particularly
those without prior experience of it from their
early education. Moreover, they felt that
programming was taught very sparsely to
engineers, leading to a lack of conceptual
understanding, as it is not explained from the
foundations of how a programming language

w)rks, making it hard to conceptualise. /

numerator = get_valid_input("Welcome to the fraction calculator, " +
"please enter the numerator", False)

denomenator = get_valid_input("Please enter the denomenator", True)

fraction = numerator/denomenator

print(fraction)

Welcome to the fraction calculator, please enter the numerator 10
Please enter the denomenator @

Invalid input, you cannot divide by zero, plese try again

Please enter the denomenator @

Invalid input, you cannot divide by zero, plese try again

Please enter the denomenator @

Invalid input, you cannot divide by zero, plese try again

Please enter the denomenator 8

1:25

Figure 22: Code with input validation

5.3 Creating infinite loops by forgetting to add a stopping condition (base case)

The simplest case where a user could accidentally create an infinite loop is through the use of the ‘while’
loop functions. An example case consists of using ‘while True:’, this statement in conjunction with the
boolean True, makes it so the while loop runs infinitely until the loop is manually broken by the user.
As shown below, a while statement and the condition a < b (which is always true), makes the loop run
infinitely, since there is never a condition that causes the loop to break. For example:

2.6 Week 5: Getting familiar with numpy

1) Create a 3x2 matrix, initially filling it with zeros, then ask the user to input
a value for each element in the matrix (the inputs should only be floats). You
can make sure that the input type is correct by creating a separate method
validate_inputs and rejects any rouge value. Finally, print out the matrix.

PROJECT AIMS

2) 3D rotations: Ask the user to input an XYZ point and then ask which
axis the user would like to rotate around. Then output the rotated point to the
screen.

To bridge the knowledge gap and create a
‘level playing field’ between students
with varying levels of programming
experience

For an anticlockwise rotation around the x-axis:

1 0 0
[O cos(0) —sin(ﬁ)]

« To help students avoid frustration by 0 sin(0) cos(6)

addressing common errors that

For an anticlockwise rotation around the y-axis:

beginners often make lmo(g) 0 sz‘%(e)]
» To build confidence by delivering —sin(8) 0 cos(6)

targeted practice questions that reinforce

For an anticlockwise rotation around the z-axis:

fundamental concepts r;sggg -s%?) 8]
* To enhance students’ problem-solving 0 0 1

skills through a practice-oriented
learning approach, in alignment with the
QMUL Graduate Attributes framework

IMPLEMENTATION
« Co-creation (staff-student partnership) of P
: - plvoema: L. L0 0 —
teaching toolkit resources s .

« Components of toolkit:
- Common errors handbook
- Practice questions booklet
- Video resources

* Piloted in a first-year undergraduate
applied mathematics module

« Embedded as an asynchronous,
formative resource for students to use

_ Practice Video Common
alongside course content Questions Playlists Errors
Toolkit Toolkit

Module Survey (190 responses)

How would you describe your previous Python
programming experience?

M Novice: no programming
experience

B Beginner: 1-10 hours of
programming experience

M Intermediate: 10-100 hours
of programming experience

M Advanced: 100+ hours of
programming experience

STUDENT FEEDBACK

“The toolkit has lots of non-obvious but also
obvious faults and mistake, which can be
difficult to spot as a beginner and so it has
been useful for me to see what | have been
making mistakes on.”

“Il like that there are questions asking you to
Identify where the errors are as this is always
a good skill to have when coding in general.”

“It gives clear and detailed notes related to

the mathematical topics which are covered in
the course”

KEY FINDINGS OF STUDENT FEEDBACK

Student feedback was positively commented on
how the toolkit design started from a
foundational approach by addressing
frequently made errors first.

Many of the respondents also highlighted that
they would like additional resources covering
different python libraries covered in the module
such as numpy, matplotlib and pandas.

CONCLUSION AND FUTURE WORK

/Incorporate feedback and make necessam

adjustments, including additional snippets
and examples for future iterations

* Include more video/interactive resources
to assist students who prefer different
teaching styles

* Incorporate machine learning elements to
cater for the second-year applied
mathematics and data science module

 Future dissemination at QMUL Festival of

KEducation and UK EERN conference in 2025/

School of Engineering and Materials Science

	Slide 1

