
# SUPRAMOLECULAR WORLD

Edited by Elham Radvar and Dominic Collis

Host-guest interactions are rapidly becoming a popular supramolecular approach to produce self-healing properties in materials, due to the dynamic system formed which can be broken and reversibly fixed. Hostguest interactions are based on the principle that a guest will bind into a cavity within the host to produce a stable complex. These two components have been modified and used to form dynamic bridges between compounds. Two of the most famous examples of these interactions are streptavidin-biotin and cyclodextrinadamantine.



Streptavidin is a large protein found in bacteria, whilst biotin (or vitamin B7) is a watersoluble molecule which is used in the synthesis of fatty acids, valine isoleucine. and Streptavidin and Biotin (Fig 1) have a binding constant within  $10^{-14}$ mol/L, inferring an extremely strong binding with only a small amount of biotin

Figure 1 – Crystal structure of biotin binding to streptavidin

needed to bind to streptavidin. The binding within this system is highly potent and this interaction has been used for surface modifications. For example, plates coated with streptavidin are commercially available to bind biotin-marked compounds on the plate.

Cyclodextrin (CD) has been known since 1891 with a cyclic cellulose structure which comes in three forms

alpha, beta (Fig 2) and gamma, with 6, 7 and 8 sugar units within the rings, respectively. Whilst the exterior of sugar ring is very hydrophilic, the interior of the cavity is very hydrophobic, which allows organic molecules to enter to form a stable complex in water. Adamantine (Ada) is the favoured guest for CD due to the bulky hydrocarbon, matching the cavity size perfectly to support many

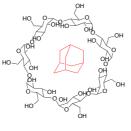



Figure 2 – The structure of the beta (7) CD ring based on the cyclic linkage of glucose and Ada, the favoured β-CD binder within the ring (red).

Van der Waals interactions within the cavity, therefore stabilising the system.

These host-guest systems have been used as potential foundation for self-healing materials. By mixing the two components of a host-guest system, they will spontaneously coordinate; however, by using mechanical stress or applying heat to the system these bonds can be broken, but given time and energy the systems can reassemble (Fig 3).

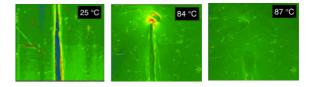



Figure 3 – Material developed in the Hayes  $Lab^{1}$ , University of Reading, which has been cut and heated to show the self-healing properties of the material. Taken from Burattini et al. 2009<sup>1</sup>.

Hyaluronic acid (HA) has shown great potential as a biomaterial and for this reason has been used in various systems to form hydrogels obtained by physical or chemical crosslinking.

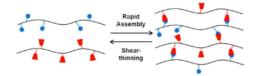



Figure 4 – Modified HA (black) with CD (red) and Ada (blue) to produce hydrogels based on host-guest interactions. Taken from Rodell et al.  $2013^2$ .

Alternatively, the Burdick group<sup>2</sup> has made a dynamic system modifying HA with CD and Ada (Fig 4) From these, they could make a robust hydrogel, which on sheering could self-heal through the CD and Ada groups on the HA, with the aim to tune the mechanical properties of the hydrogel and control the release of drugs.

#### References

- 1. Burattini, S., et al., *A novel self-healing supramolecular polymer* system. Faraday Discussions, 2009. **143**(0): p. 251-264.
- Rodell, C.B., Kaminski, A.L., Burdick, J.A., Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules, 2013. 14(11): p. 4125-4134.



# **MHAtriCell Group**

#### **Visiting PhD student**

| Aliya Bekmurz | ayeva Design of aptamer-functionalized medical wire for breast | Funded by the Newton Fund   |
|---------------|----------------------------------------------------------------|-----------------------------|
| Sep 2016      | cancer stem cell isolation and detection.                      | Researcher Links programme  |
|               | School of Engineering, Nazarbayev University, Kazakhstar       | n (Researcher Travel Grant) |



Group photo (November 2016): Left to right; Dominic, Elham, Clare, Helena, Kseniya, Yeijao, Jayati and Joao.

## Recent and upcoming publications

- I. M. Martins, R. L. Reis, H. S. Azevedo, Phage Display Technology in Biomaterials Engineering: Progress and Opportunities for Applications in Regenerative Medicine, ACS Chemical Biology 2016, 11 (11): 2962–2980.
- J. Banerjee, Y. Shi, H. S. Azevedo, In Vitro Blood-brain Barrier Models for Drug Research: State-of-the-art and New Perspectives on Reconstituting these Models on Artificial Basement Membrane Platforms, Drug Discovery Today 2016, 21: 1367-1386.
- J. Banerjee, H. S. Azevedo, Crafting of Functional Biomaterials by Directed Molecular Self-Assembly of Triple Helical Peptide Building Blocks, Interface Focus, submitted.
- K. Shuturminska, C. O'Malley, D. W. P. Collis, J. Conde, H. S. Azevedo, Displaying biofunctionality on materials through templated self-assembly, in Self-Assembling Biomaterials: Molecular Design, Characterization and Application in Biology and Medicine, Eds. H. S. Azevedo, R. M. P. da Silva, Elsevier

## **Invited lectures:**

- 16<sup>th</sup> September 2016 "Customized Biomaterials through Precise Molecular Engineering", Bioengineering Seminar Series, University of Southampton, UK.
- 24<sup>th</sup> 25<sup>th</sup> October 2016 "Engineering Peptide Display for Self-assembly and Interactions with Cells", Royal Society Theo Murphy International Scientific Meeting on Self-Assembled Peptides: From Nanostructure to Bioactivity, Royal Society's Chicheley Hall Conference Centre, Buckinghamshire, UK.
- 8<sup>th</sup> November 2016 "Engineering Biomaterials at the Molecular Scale: Efforts Towards Precise & Customized Medicine", Life Sciences Society, Metropolitan University, London, UK.
- 14<sup>th</sup> November 2016 "An Academic Career in Bioengineering", City of London School for Girls London, UK.
- 22<sup>nd</sup> November 2016 "Simple Chemistry to Assemble Biomaterials with Complexity and Desired Functionality", Chemistry Centre Seminars, University of Minho, Portugal.
- 24<sup>th</sup> November 2016 "Exploring New Avenues in Synthetic Chemistry to Open New Roads in the Natural-based World", Chem2Nature (European Horizon 2020 Twinning project CHEM2NATURE: Enabling precision chemical methodologies



applied to natural-based systems for the development of multifunctional biomedical devices) First School, University of Minho, Portugal.

## Past and future presentations at national and international conferences/meetings

| Dominic Collis | Polymer conference, Warwick, UK<br>11 <sup>th</sup> – 14 <sup>th</sup> July<br>RSC Material Division, London, UK<br>25 <sup>th</sup> November 2016 | Design and synthesis of hyaluronan based glycopolymers<br>for self-assembly with hyaluronan binding peptides<br>Neoglycopolymers of hyaluronan: mimicking the simplest<br>glycosaminoglycan |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elham Radvar   | TERMIS-EU 2017, Davos, Switzerland<br>26 <sup>th</sup> – 30 <sup>th</sup> June 2017                                                                | Multi-functional self-assembling hydrogels as biomimetic<br>scaffolds for protein delivery and stem cell culture                                                                            |

## International courses

|                |                | Cold Spring Harbour Laboratories,<br>I <b>alley</b> New York, US.<br>27 <sup>th</sup> October- 10 <sup>th</sup> November 2016 | Course title: 'Antibody Engineering, Phage Display & Immune |
|----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Clare O'Malley | Clare O'Malley |                                                                                                                               | Repertoire Analysis'                                        |
|                | clare O walley |                                                                                                                               | Funding Awards: QMUL Postgraduate Research Fund and         |
|                |                |                                                                                                                               | Helmsley Fellowship                                         |

## MHAtriCell activity overview 2016







# Conferences

#### **International events**

- 5<sup>th</sup> International Conference on Multifunctional, Hybrid and Nanomaterials, 6<sup>th</sup> 10<sup>th</sup> March 2017, Lisbon, Portugal Link.
- > 33<sup>rd</sup> Southern Biomedical Engineering Conference 2017, 17<sup>th</sup> 19<sup>th</sup> March 2017, Mississippi, US Link.
- > 2<sup>nd</sup> Annual Conference and Expo on Biomaterials, 27<sup>th</sup> 28<sup>th</sup> March 2017, Madrid, Spain Link.
- Gordon Research Conference Self-Assembly & Supramolecular Chemistry, 21<sup>st</sup> 26<sup>th</sup> May 2017, Les Diablerets, Switzerland Link.
- > 11<sup>th</sup> International Conference of Hyaluronan, 11<sup>th</sup> 15<sup>th</sup> June 2017, Cleveland, US Link.
- 9<sup>th</sup> International Conference on Materials for Advanced Technologies, 18<sup>th</sup> 23<sup>rd</sup> June 2017, Suntec, Singapore Link.
- ▶ TERMIS-EU 2017, 26<sup>th</sup> 30<sup>th</sup> June 2017, Davos, Switzerland Link.

## **UK events**

- Controlled Release Delivery, 3<sup>rd</sup> 4<sup>th</sup> April 2017, London, UK Link.
- ➢ 4<sup>th</sup> Annual Peptides Congress, 24<sup>th</sup> − 25<sup>th</sup> April 2017, London, UK Link.
- Chemical Biology Symposium, 4<sup>th</sup> May 2017, London, UK Link.
- 10<sup>th</sup> International Conference on Cancer Stem Cells and Regenerative Medicine, 29<sup>th</sup> 30<sup>th</sup> June 2017, London, UK Link.

## Acknowledgements

We'd like to thank European Union for funding through the Marie Curie Career Integration Grant SuprHApolymers (PCIG14-GA-2013-631871).

### Contacts

MHAtriCell Group School of Engineering & Materials Science Queen Mary University of London Mile End Road, London E1 4NS, UK Helena Azevedo: h.azevedo@qmul.ac.uk Elham Radvar: e.radvar@qmul.ac.uk Dominic William Peter Collis: d.w.p.collis@qmul.ac.uk





